NAG Toolbox for MATLAB

s09ab

1 Purpose

s09ab returns the value of the inverse circular cosine, $\arccos x$, via the function name; the result is in the principal range $(0,\pi)$.

2 Syntax

[result, ifail] =
$$s09ab(x)$$

3 Description

s09ab calculates an approximate value for the inverse circular cosine, $\arccos x$. It is based on the Chebyshev expansion

$$\arcsin x = x \times y(t) = x \sum_{r=0}^{\prime} a_r T_r(t)$$

where
$$\frac{-1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$$
, and $t = 4x^2 - 1$.

For
$$x^2 \le \frac{1}{2}$$
, $\arccos x = \frac{\pi}{2} - \arcsin x$.

For
$$-1 \le x < \frac{-1}{\sqrt{2}}$$
, $\arccos x = \pi - \arcsin \sqrt{1 - x^2}$.

For
$$\frac{1}{\sqrt{2}} < x \le 1$$
, $\arccos x = \arcsin \sqrt{1 - x^2}$.

For |x| > 1, arccos x is undefined and the function fails.

4 References

Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (3rd Edition) Dover Publications

5 Parameters

5.1 Compulsory Input Parameters

1: x - double scalar

The argument x of the function.

Constraint: $|\mathbf{x}| \leq 1.0$.

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

None.

[NP3663/21] s09ab.1

s09ab NAG Toolbox Manual

5.4 Output Parameters

1: result – double scalar

The result of the function.

2: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

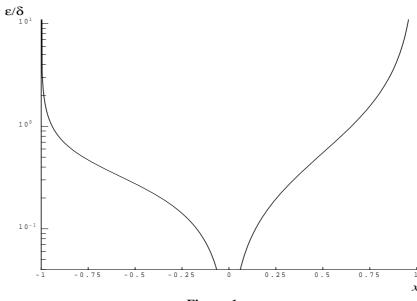
s09ab has been called with $|\mathbf{x}| > 1.0$, for which arccos is undefined. A zero result is returned.

7 Accuracy

If δ and ϵ are the relative errors in the argument and the result, respectively, then in principle

$$|\epsilon| \simeq \left| \frac{x}{\arccos x \sqrt{1 - x^2}} \times \delta \right|.$$

The equality should hold if δ is greater than the *machine precision* (δ is due to data errors etc.), but if δ is due simply to round-off in the machine it is possible that rounding etc. in internal calculations may lose one extra figure.


The behaviour of the amplification factor $\frac{x}{\arccos x\sqrt{1-x^2}}$ is shown in the graph below.

In the region of x=0 this factor tends to zero and the accuracy will be limited by the *machine precision*. For |x| close to one, $1-|x|\sim\delta$, the above analysis is not applicable owing to the fact that both the argument and the result are bounded $|x|\leq 1$, $0\leq \arccos x\leq\pi$.

In the region of $x \sim -1$ we have $\epsilon \sim \sqrt{\delta}$, that is the result will have approximately half as many correct significant figures as the argument.

In the region $x \sim +1$, we have that the absolute error in the result, E, is given by $E \sim \sqrt{\delta}$, that is the result will have approximately half as many decimal places correct as there are correct figures in the argument.

s09ab.2 [NP3663/21]

Figure 1

8 Further Comments

None.

9 Example

[NP3663/21] s09ab.3 (last)